Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.387
Filtrar
1.
J Biol Chem ; 300(3): 105731, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336295

RESUMO

The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.


Assuntos
Evolução Molecular , Ribonuclease P , Animais , Humanos , Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética , Filogenia , Ribonuclease P/química , Ribonuclease P/classificação , Ribonuclease P/genética , Ribonuclease P/metabolismo , RNA Catalítico
2.
Nucleic Acids Res ; 52(2): 558-571, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38048305

RESUMO

How genetic information gained its exquisite control over chemical processes needed to build living cells remains an enigma. Today, the aminoacyl-tRNA synthetases (AARS) execute the genetic codes in all living systems. But how did the AARS that emerged over three billion years ago as low-specificity, protozymic forms then spawn the full range of highly-specific enzymes that distinguish between 22 diverse amino acids? A phylogenetic reconstruction of extant AARS genes, enhanced by analysing modular acquisitions, reveals six AARS with distinct bacterial, archaeal, eukaryotic, or organellar clades, resulting in a total of 36 families of AARS catalytic domains. Small structural modules that differentiate one AARS family from another played pivotal roles in discriminating between amino acid side chains, thereby expanding the genetic code and refining its precision. The resulting model shows a tendency for less elaborate enzymes, with simpler catalytic domains, to activate amino acids that were not synthesised until later in the evolution of the code. The most probable evolutionary route for an emergent amino acid type to establish a place in the code was by recruiting older, less specific AARS, rather than adapting contemporary lineages. This process, retrofunctionalisation, differs from previously described mechanisms through which amino acids would enter the code.


Assuntos
Aminoacil-tRNA Sintetases , Evolução Molecular , Código Genético , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Bactérias/enzimologia , Bactérias/genética , Filogenia , Archaea/enzimologia , Archaea/genética , Eucariotos/enzimologia , Eucariotos/genética
3.
Nucleic Acids Res ; 52(2): 513-524, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38100361

RESUMO

Protein translation is orchestrated through tRNA aminoacylation and ribosomal elongation. Among the highly conserved structure of tRNAs, they have distinguishing features which promote interaction with their cognate aminoacyl tRNA synthetase (aaRS). These key features are referred to as identity elements. In our study, we investigated the tRNA:aaRS pair that installs the 22nd amino acid, pyrrolysine (tRNAPyl:PylRS). Pyrrolysyl-tRNA synthetases (PylRSs) are naturally encoded in some archaeal and bacterial genomes to acylate tRNAPyl with pyrrolysine. Their large amino acid binding pocket and poor recognition of the tRNA anticodon have been instrumental in incorporating >200 noncanonical amino acids. PylRS enzymes can be divided into three classes based on their genomic structure. Two classes contain both an N-terminal and C-terminal domain, however the third class (ΔpylSn) lacks the N-terminal domain. In this study we explored the tRNA identity elements for a ΔpylSn tRNAPyl from Candidatus Methanomethylophilus alvus which drives the orthogonality seen with its cognate PylRS (MaPylRS). From aminoacylation and translation assays we identified five key elements in ΔpylSn tRNAPyl necessary for MaPylRS activity. The absence of a base (position 8) and a G-U wobble pair (G28:U42) were found to affect the high-resolution structure of the tRNA, while molecular dynamic simulations led us to acknowledge the rigidity imparted from the G-C base pairs (G3:C70 and G5:C68).


Enzymes known as PylRS offer the remarkable ability to expand the natural genetic code of a living cell with unnatural amino acids. Currently, over 200 unnatural amino acids can be genetically encoded with the help of PylRS and its partner tRNAPyl, enabling us to endow proteins with novel properties, or regulate protein activity using light or inducible cross-linking. One intriguing feature of PylRS enzymes is their ability to avoid cross-reactivity when two PylRS homologs from different organisms-such as those from the archaea Methanosarcina mazei and Methanomethylophilus alvus-are co-expressed in a single cell. This makes it possible to simultaneously encode two unnatural amino acids in a single protein. This study illuminates the elusive mechanism of PylRS specificity by using cryo-electron microscopy, biochemistry and molecular simulations. The interaction of PylRS from M. alvus with its tRNAPyl is best described as two pieces of a jigsaw puzzle; in which PylRS recognizes the unique shape of its cognate tRNA instead of specific nucleotides in the tRNA sequence like other tRNA-binding enzymes. This finding may streamline the rational design of tools for simultaneous genetic incorporation of multiple unnatural amino acids, thereby facilitating the development of valuable proteins for research, medicine, and biotechnology.


Assuntos
Aminoacil-tRNA Sintetases , Archaea , Microbioma Gastrointestinal , Humanos , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/isolamento & purificação , Aminoacil-tRNA Sintetases/metabolismo , Archaea/enzimologia , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacilação de RNA de Transferência
4.
J Mol Biol ; 435(14): 168018, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356897

RESUMO

The Enzyme Function Initiative (EFI) provides a web resource with "genomic enzymology" web tools to leverage the protein (UniProt) and genome (European Nucleotide Archive; ENA; https://www.ebi.ac.uk/ena/) databases to assist the assignment of in vitro enzymatic activities and in vivo metabolic functions to uncharacterized enzymes (https://efi.igb.illinois.edu/). The tools enable (1) exploration of sequence-function space in enzyme families using sequence similarity networks (SSNs; EFI-EST), (2) easy access to genome context for bacterial, archaeal, and fungal proteins in the SSN clusters so that isofunctional families can be identified and their functions inferred from genome context (EFI-GNT); and (3) determination of the abundance of SSN clusters in NIH Human Metagenome Project metagenomes using chemically guided functional profiling (EFI-CGFP). We describe enhancements that enable SSNs to be generated from taxonomy categories, allowing higher resolution analyses of sequence-function space; we provide examples of the generation of taxonomy category-specific SSNs.


Assuntos
Bases de Dados Genéticas , Enzimas , Internet , Humanos , Bactérias/enzimologia , Bactérias/genética , Genômica , Metagenoma , Enzimas/química , Enzimas/genética , Archaea/enzimologia , Archaea/genética , Fungos/enzimologia , Fungos/genética
5.
Nucleic Acids Res ; 51(9): 4488-4507, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37070157

RESUMO

Family A DNA polymerases (PolAs) form an important and well-studied class of extant polymerases participating in DNA replication and repair. Nonetheless, despite the characterization of multiple subfamilies in independent, dedicated works, their comprehensive classification thus far is missing. We therefore re-examine all presently available PolA sequences, converting their pairwise similarities into positions in Euclidean space, separating them into 19 major clusters. While 11 of them correspond to known subfamilies, eight had not been characterized before. For every group, we compile their general characteristics, examine their phylogenetic relationships and perform conservation analysis in the essential sequence motifs. While most subfamilies are linked to a particular domain of life (including phages), one subfamily appears in Bacteria, Archaea and Eukaryota. We also show that two new bacterial subfamilies contain functional enzymes. We use AlphaFold2 to generate high-confidence prediction models for all clusters lacking an experimentally determined structure. We identify new, conserved features involving structural alterations, ordered insertions and an apparent structural incorporation of a uracil-DNA glycosylase (UDG) domain. Finally, genetic and structural analyses of a subset of T7-like phages indicate a splitting of the 3'-5' exo and pol domains into two separate genes, observed in PolAs for the first time.


Assuntos
Bactérias , DNA Polimerase Dirigida por DNA , Archaea/enzimologia , Bactérias/enzimologia , DNA Polimerase Dirigida por DNA/química , Eucariotos/enzimologia , Filogenia , Uracila-DNA Glicosidase/química
6.
Nucleic Acids Res ; 50(22): 12969-12978, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533440

RESUMO

Sulfuration of uridine 8, in bacterial and archaeal tRNAs, is catalyzed by enzymes formerly known as ThiI, but renamed here TtuI. Two different classes of TtuI proteins, which possess a PP-loop-containing pyrophosphatase domain that includes a conserved cysteine important for catalysis, have been identified. The first class, as exemplified by the prototypic Escherichia coli enzyme, possesses an additional C-terminal rhodanese domain harboring a second cysteine, which serves to form a catalytic persulfide. Among the second class of TtuI proteins that do not possess the rhodanese domain, some archaeal proteins display a conserved CXXC + C motif. We report here spectroscopic and enzymatic studies showing that TtuI from Methanococcus maripaludis and Pyrococcus furiosus can assemble a [4Fe-4S] cluster that is essential for tRNA sulfuration activity. Moreover, structural modeling studies, together with previously reported mutagenesis experiments of M. maripaludis TtuI, indicate that the [4Fe-4S] cluster is coordinated by the three cysteines of the CXXC + C motif. Altogether, our results raise a novel mechanism for U8-tRNA sulfuration, in which the cluster is proposed to catalyze the transfer of sulfur atoms to the activated tRNA substrate.


Assuntos
Archaea , Cisteína , Proteínas Ferro-Enxofre , RNA de Transferência , Tiossulfato Sulfurtransferase , Archaea/enzimologia , Archaea/genética , Catálise , Cisteína/metabolismo , Proteínas Ferro-Enxofre/metabolismo , RNA de Transferência/metabolismo , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/genética , Tiossulfato Sulfurtransferase/metabolismo , Motivos de Aminoácidos , Mutagênese , Domínios Proteicos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
7.
J Biol Chem ; 298(11): 102521, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36152750

RESUMO

The pyrrolysyl-tRNA synthetase (PylRS) facilitates the cotranslational installation of the 22nd amino acid pyrrolysine. Owing to its tolerance for diverse amino acid substrates, and its orthogonality in multiple organisms, PylRS has emerged as a major route to install noncanonical amino acids into proteins in living cells. Recently, a novel class of PylRS enzymes was identified in a subset of methanogenic archaea. Enzymes within this class (ΔPylSn) lack the N-terminal tRNA-binding domain that is widely conserved amongst PylRS enzymes, yet remain active and orthogonal in bacteria and eukaryotes. In this study, we use biochemical and in vivo UAG-readthrough assays to characterize the aminoacylation efficiency and substrate spectrum of a ΔPylSn class PylRS from the archaeon Candidatus Methanomethylophilus alvus. We show that, compared with the full-length enzyme from Methanosarcina mazei, the Ca. M. alvus PylRS displays reduced aminoacylation efficiency but an expanded amino acid substrate spectrum. To gain insight into the evolution of ΔPylSn enzymes, we performed molecular phylogeny using 156 PylRS and 105 pyrrolysine tRNA (tRNAPyl) sequences from diverse archaea and bacteria. This analysis suggests that the PylRS•tRNAPyl pair diverged before the evolution of the three domains of life, placing an early limit on the evolution of the Pyl-decoding trait. Furthermore, our results document the coevolutionary history of PylRS and tRNAPyl and reveal the emergence of tRNAPyl sequences with unique A73 and U73 discriminator bases. The orthogonality of these tRNAPyl species with the more common G73-containing tRNAPyl will enable future efforts to engineer PylRS systems for further genetic code expansion.


Assuntos
Aminoacil-tRNA Sintetases , Archaea , Código Genético , Lisina , Aminoacil-tRNA Sintetases/metabolismo , Archaea/enzimologia , Archaea/genética , Lisina/análogos & derivados , Lisina/genética , Methanosarcina , RNA de Transferência/genética
8.
Proc Natl Acad Sci U S A ; 119(37): e2200014119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067300

RESUMO

Enzymes catalyze key reactions within Earth's life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.


Assuntos
Proteínas Arqueais , Proteínas de Bactérias , Microbiota , Nitrificação , Água do Mar , Archaea/classificação , Archaea/enzimologia , Proteínas Arqueais/análise , Bactérias/classificação , Bactérias/enzimologia , Proteínas de Bactérias/análise , Biodiversidade , Nitrito Redutases/metabolismo , Oceano Pacífico , Proteômica/métodos , Água do Mar/microbiologia
9.
Sci Rep ; 12(1): 2850, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181739

RESUMO

The SKY hot spring is a unique site filled with a thick layer of plant litter. With the advancement of next-generation sequencing, it is now possible to mine many new biocatalyst sequences. In this study, we aimed to (i) identify the metataxonomic of prokaryotes and eukaryotes in microbial mats using 16S and 18S rRNA markers, (ii) and explore carbohydrate degrading enzymes (CAZymes) that have a high potential for future applications. Green microbial mat, predominantly photosynthetic bacteria, was attached to submerged or floating leaves litter. At the spring head, the sediment mixture consisted of plant debris, predominantly brownish-reddish gelatinous microbial mat, pale tan biofilm, and grey-white filament biofilm. The population in the spring head had a higher percentage of archaea and hyperthermophiles than the green mat. Concurrently, we cataloged nearly 10,000 sequences of CAZymes in both green and brown biofilms using the shotgun metagenomic sequencing approach. These sequences include ß-glucosidase, cellulase, xylanase, α-N-arabinofuranosidase, α-L-arabinofuranosidase, and other CAZymes. In conclusion, this work elucidated that SKY is a unique hot spring due to its rich lignocellulosic material, often absent in other hot springs. The data collected from this study serves as a repository of new thermostable macromolecules, in particular families of glycoside hydrolases.


Assuntos
Biofilmes , Carboidratos/química , Lignina/química , Consórcios Microbianos/genética , Archaea/enzimologia , Archaea/genética , Bactérias/química , Bactérias/genética , Biodiversidade , Glicosídeo Hidrolases/química , Temperatura Alta , Metagenoma/genética , Filogenia , RNA Ribossômico 16S/genética
10.
RNA Biol ; 19(1): 246-255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35133940

RESUMO

RNA polymerase III (Pol III) is a large multisubunit complex conserved in all eukaryotes that plays an essential role in producing a variety of short non-coding RNAs, such as tRNA, 5S rRNA and U6 snRNA transcripts. Pol III comprises of 17 subunits in both yeast and human with a 10-subunit core and seven peripheral subunits. Because of its size and complexity, Pol III has posed a formidable challenge to structural biologists. The first atomic cryogenic electron microscopy structure of yeast Pol III leading to the canonical view was reported in 2015. Within the last few years, the optimization of endogenous extract and purification procedure and the technical and methodological advances in cryogenic electron microscopy, together allow us to have a first look at the unprecedented details of human Pol III organization. Here, we look back on the structural studies of human Pol III and discuss them in the light of our current understanding of its role in eukaryotic transcription.


Assuntos
Modelos Moleculares , Conformação Proteica , RNA Polimerase III/química , RNA Polimerase III/metabolismo , Archaea/enzimologia , Sequência Conservada , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas , RNA Polimerase III/genética , Relação Estrutura-Atividade , Leveduras/enzimologia
11.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056787

RESUMO

Here, we investigated the impact of different turning frequency (TF) on dynamic changes of N fractions, NH3 emission and bacterial/archaeal community during chicken manure composting. Compared to higher TF (i.e., turning every 1 or 3 days in CMS1 or CMS3 treatments, respectively), lower TF (i.e., turning every 5 or 7 days in CMS5 or CMS7 treatments, respectively) decreased NH3 emission by 11.42-18.95%. Compared with CMS1, CMS3 and CMS7 treatments, the total nitrogen loss of CMS5 decreased by 38.03%, 17.06% and 24.76%, respectively. Ammonia oxidizing bacterial/archaeal (AOB/AOA) communities analysis revealed that the relative abundance of Nitrosospira and Nitrososphaera was higher in lower TF treatment during the thermophilic and cooling stages, which could contribute to the reduction of NH3 emission. Thus, different TF had a great influence on NH3 emission and microbial community during composting. It is practically feasible to increase the abundance of AOB/AOA through adjusting TF and reduce NH3 emission the loss of nitrogen during chicken manure composting.


Assuntos
Amônia/análise , Compostagem/métodos , Esterco/análise , Amônia/química , Animais , Archaea/classificação , Archaea/enzimologia , Bactérias/classificação , Bactérias/enzimologia , Galinhas , Correlação de Dados , Meio Ambiente , Germinação , Concentração de Íons de Hidrogênio , Esterco/microbiologia , Microbiota , Nitratos/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Oxirredução , Caules de Planta , Temperatura , Água
12.
ACS Chem Biol ; 17(1): 85-102, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34905349

RESUMO

Isopentenyl phosphate kinases (IPKs) catalyze the ATP-dependent phosphorylation of isopentenyl monophosphate (IP) to isopentenyl diphosphate (IPP) in the alternate mevalonate pathways of the archaea and plant cytoplasm. In recent years, IPKs have also been employed in artificial biosynthetic pathways called "(iso) prenol pathways" that utilize promiscuous kinases to sequentially phosphorylate (iso) prenol and generate the isoprenoid precursors IPP and dimethylallyl diphosphate (DMAPP). Furthermore, IPKs have garnered attention for their impressive substrate promiscuity toward non-natural alkyl-monophosphates (alkyl-Ps), which has prompted their utilization as biocatalysts for the generation of novel isoprenoids. However, none of the IPK crystal structures currently available contain non-natural substrates, leaving the roles of active-site residues in substrate promiscuity ambiguous. To address this, we present herein the high-resolution crystal structures of an IPK from Candidatus methanomethylophilus alvus (CMA) in the apo form and bound to natural and non-natural substrates. Additionally, we describe active-site engineering studies leading to enzyme variants with broadened substrate scope, as well as structure determination of two such variants (Ile74Ala and Ile146Ala) bound to non-natural alkyl-Ps. Collectively, our crystallographic studies compare six structures of CMA variants in different ligand-bound forms and highlight contrasting structural dynamics of the two substrate-binding sites. Furthermore, the structural and mutational studies confirm a novel role of the highly conserved DVTGG motif in catalysis, both in CMA and in IPKs at large. As such, the current study provides a molecular basis for the substrate-binding modes and catalytic performance of CMA toward the goal of developing IPKs into useful biocatalysts.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Regulação da Expressão Gênica em Archaea , Regulação Enzimológica da Expressão Gênica , Genoma Arqueal , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Quinases , Especificidade por Substrato
13.
Sci Rep ; 11(1): 22849, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819551

RESUMO

The ammonia-oxidizing thaumarchaeal 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle is one of the most energy-efficient CO2 fixation cycles discovered thus far. The protein encoded by Nmar_1308 (from Nitrosopumilus maritimus SCM1) is a promiscuous enzyme that catalyzes two essential reactions within the thaumarchaeal 3HP/4HB cycle, functioning as both a crotonyl-CoA hydratase (CCAH) and 3-hydroxypropionyl-CoA dehydratase (3HPD). In performing both hydratase and dehydratase activities, Nmar_1308 reduces the total number of enzymes necessary for CO2 fixation in Thaumarchaeota, reducing the overall cost for biosynthesis. Here, we present the first high-resolution crystal structure of this bifunctional enzyme with key catalytic residues in the thaumarchaeal 3HP/4HB pathway.


Assuntos
Acil Coenzima A/metabolismo , Archaea/enzimologia , Proteínas Arqueais/metabolismo , Dióxido de Carbono/metabolismo , Enoil-CoA Hidratase/metabolismo , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Catálise , Cristalografia por Raios X , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/genética , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Biomolecules ; 11(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572549

RESUMO

Amylomaltases (4-α-glucanotransferases, E.C. 2.4.1.25) are enzymes which can perform a double-step catalytic process, resulting in a transglycosylation reaction. They hydrolyse glucosidic bonds of α-1,4'-d-glucans and transfer the glucan portion with the newly available anomeric carbon to the 4'-position of an α-1,4'-d-glucan acceptor. The intramolecular reaction produces a cyclic α-1,4'-glucan. Amylomaltases can be found only in prokaryotes, where they are involved in glycogen degradation and maltose metabolism. These enzymes are being studied for possible biotechnological applications, such as the production of (i) sugar substitutes; (ii) cycloamyloses (molecules larger than cyclodextrins), which could potentially be useful as carriers and encapsulating agents for hydrophobic molecules and also as effective protein chaperons; and (iii) thermoreversible starch gels, which could be used as non-animal gelatin substitutes. Extremophilic prokaryotes have been investigated for the identification of amylomaltases to be used in the starch modifying processes, which require high temperatures or extreme conditions. The aim of this article is to present an updated overview of studies on amylomaltases from extremophilic Bacteria and Archaea, including data about their distribution, activity, potential industrial application and structure.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Extremófilos/enzimologia , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Sequência de Aminoácidos , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Modelos Moleculares , Mutação/genética
15.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576056

RESUMO

L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine and food industry. Drawbacks of current commercial L-ASNases stimulate the search for better-producing sources of the enzyme, and extremophiles are especially attractive in this view. In this study, a novel L-asparaginase originating from the hyperthermophilic archaeon Thermococcus sibiricus (TsA) was expressed in Escherichia coli, purified and characterized. The enzyme is optimally active at 90 °C and pH 9.0 with a specific activity of 2164 U/mg towards L-asparagine. Kinetic parameters KM and Vmax for the enzyme are 2.8 mM and 1200 µM/min, respectively. TsA is stable in urea solutions 0-6 M and displays no significant changes of the activity in the presence of metal ions Ni2+, Cu2+, Mg2+, Zn2+ and Ca2+ and EDTA added in concentrations 1 and 10 mmol/L except for Fe3+. The enzyme retains 86% of its initial activity after 20 min incubation at 90 °C, which should be enough to reduce acrylamide formation in foods processed at elevated temperatures. TsA displays strong cytotoxic activity toward cancer cell lines K562, A549 and Sk-Br-3, while normal human fibroblasts WI-38 are almost unsensitive to it. The enzyme seems to be a promising candidate for further investigation and biotechnology application.


Assuntos
Archaea/enzimologia , Asparaginase/isolamento & purificação , Biotecnologia/tendências , Thermococcus/enzimologia , Sequência de Aminoácidos/genética , Antineoplásicos/química , Antineoplásicos/farmacologia , Asparaginase/química , Asparaginase/genética , Asparagina/metabolismo , Estabilidade Enzimática/genética , Escherichia coli/efeitos dos fármacos , Cinética , Especificidade por Substrato/genética
16.
Nat Commun ; 12(1): 5281, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489402

RESUMO

The archaeal phylum Woesearchaeota, within the DPANN superphylum, includes phylogenetically diverse microorganisms that inhabit various environments. Their biology is poorly understood due to the lack of cultured isolates. Here, we analyze datasets of Woesearchaeota 16S rRNA gene sequences and metagenome-assembled genomes to infer global distribution patterns, ecological preferences and metabolic capabilities. Phylogenomic analyses indicate that the phylum can be classified into ten subgroups, termed A-J. While a symbiotic lifestyle is predicted for most, some members of subgroup J might be host-independent. The genomes of several Woesearchaeota, including subgroup J, encode putative [FeFe] hydrogenases (known to be important for fermentation in other organisms), suggesting that these archaea might be anaerobic fermentative heterotrophs.


Assuntos
Archaea/genética , Proteínas Arqueais/genética , Genoma Arqueal , Hidrogenase/genética , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Sequência de Aminoácidos , Anaerobiose/genética , Archaea/classificação , Archaea/enzimologia , Proteínas Arqueais/metabolismo , Evolução Biológica , Fermentação , Processos Heterotróficos/genética , Hidrogenase/metabolismo , Metagenoma , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
17.
Biochem Biophys Res Commun ; 572: 151-156, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364295

RESUMO

Pyruvate synthase (pyruvate:ferredoxin oxidoreductase, PFOR) catalyzes the interconversion of acetyl-CoA and pyruvate, but the reductive carboxylation activities of heterotetrameric PFORs remain largely unknown. In this study, we cloned, expressed, and purified selected six heterotetrameric PFORs from hyperthermophilic archaea. The reductive carboxylation activities of these heterotetrameric PFORs were measured at 70 °C and the ratio of reductive carboxylation activity to oxidative decarboxylation activity (red/ox ratio) were calculated. Four out of six showed reductive decarboxylation activities. Among them, the PFORpfm from Pyrolobus fumarii showed the highest reductive carboxylation activities and the highest red/ox ratio, which were 54.32 mU/mg and 0.51, respectively. The divergence of the reductive carboxylation activities and the red/ox ratios of heterotetrameric PFORs in hyperthermophilic archaea indicate the diversity of the functions of PFOR over long-term evolution. This can help us better understand the autotrophic CO2 fixation process in thermal vent, or in other CO2-rich high temperature habitat.


Assuntos
Archaea/enzimologia , Piruvato Sintase/metabolismo , Ácidos Carboxílicos/metabolismo , Oxirredução
18.
Biochem J ; 478(17): 3265-3279, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34409984

RESUMO

Plant and fungal THI4 thiazole synthases produce the thiamin thiazole moiety in aerobic conditions via a single-turnover suicide reaction that uses an active-site Cys residue as sulfur donor. Multiple-turnover (i.e. catalytic) THI4s lacking an active-site Cys (non-Cys THI4s) that use sulfide as sulfur donor have been biochemically characterized -- but only from archaeal methanogens that are anaerobic, O2-sensitive hyperthermophiles from sulfide-rich habitats. These THI4s prefer iron as cofactor. A survey of prokaryote genomes uncovered non-Cys THI4s in aerobic mesophiles from sulfide-poor habitats, suggesting that multiple-turnover THI4 operation is possible in aerobic, mild, low-sulfide conditions. This was confirmed by testing 23 representative non-Cys THI4s for complementation of an Escherichia coli ΔthiG thiazole auxotroph in aerobic conditions. Sixteen were clearly active, and more so when intracellular sulfide level was raised by supplying Cys, demonstrating catalytic function in the presence of O2 at mild temperatures and indicating use of sulfide or a sulfide metabolite as sulfur donor. Comparative genomic evidence linked non-Cys THI4s with proteins from families that bind, transport, or metabolize cobalt or other heavy metals. The crystal structure of the aerotolerant bacterial Thermovibrio ammonificans THI4 was determined to probe the molecular basis of aerotolerance. The structure suggested no large deviations compared with the structures of THI4s from O2-sensitive methanogens, but is consistent with an alternative catalytic metal. Together with complementation data, use of cobalt rather than iron was supported. We conclude that catalytic THI4s can indeed operate aerobically and that the metal cofactor inserted is a likely natural determinant of aerotolerance.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Bactérias/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Tiamina/biossíntese , Proteínas Arqueais/genética , Biocatálise , Domínio Catalítico , Cobalto/metabolismo , Cristalização , Cisteína/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genômica/métodos , Ferro/metabolismo , Microrganismos Geneticamente Modificados , Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Sulfetos/metabolismo , Enxofre/metabolismo
19.
Nucleic Acids Res ; 49(16): 9444-9458, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34387688

RESUMO

The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5' leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250-500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10-20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.


Assuntos
Archaea/enzimologia , Magnésio/metabolismo , RNA Arqueal/genética , Ribonuclease P/genética , Conformação de Ácido Nucleico/efeitos dos fármacos , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Precursores de RNA/genética , RNA Arqueal/ultraestrutura , RNA Catalítico , Ribonuclease P/ultraestrutura
20.
Proteins ; 89(11): 1497-1507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216160

RESUMO

The F420 deazaflavin cofactor is an intriguing molecule as it structurally resembles the canonical flavin cofactor, although behaves as a nicotinamide cofactor due to its obligate hydride-transfer reactivity and similar low redox potential. Since its discovery, numerous enzymes relying on it have been described. The known deazaflavoproteins are taxonomically restricted to Archaea and Bacteria. The biochemistry of the deazaflavoenzymes is diverse and they exhibit great structural variability. In this study a thorough sequence and structural homology evolutionary analysis was performed in order to generate an overarching classification of the F420 -dependent oxidoreductases. Five different deazaflavoenzyme Classes (I-V) are described according to their structural folds as follows: Class I encompassing the TIM-barrel F420 -dependent enzymes; Class II including the Rossmann fold F420 -dependent enzymes; Class III comprising the ß-roll F420 -dependent enzymes; Class IV which exclusively gathers the SH3 barrel F420 -dependent enzymes and Class V including the three layer ßßα sandwich F420 -dependent enzymes. This classification provides a framework for the identification and biochemical characterization of novel deazaflavoenzymes.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Coenzimas/química , Oxirredutases/química , Riboflavina/análogos & derivados , Archaea/química , Archaea/classificação , Archaea/genética , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Coenzimas/metabolismo , Evolução Molecular , Expressão Gênica , Modelos Moleculares , Oxirredução , Oxirredutases/classificação , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Conformação Proteica , Riboflavina/química , Riboflavina/metabolismo , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...